DATE:

TANTAUNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY

EXAMINATION FOR LEVEL TWO STUDENTS (ALL SECTIONS) COURSE CODE: CH2105

\$1.000	
1969	COURSE TITLE:
MA - 12 - 1777 178	į

15-1-2017

TERM: FIRST TERM

PRINCIPLES OF ANALYTICAL CHEMISTRY TOTAL ASSESSMENT MARKS: 100

TIME ALLOWED: 2HRS

Question (1): Choose the correct answer and give the reasons

(30 Marks)

Choose only	"ten	<u>"</u> of	the f	ollowing
-------------	------	-------------	-------	----------

Choose only <u>"ten"</u> of the following,		
1) The pH value of half way to the eq	uivalence point for	the titration of ammonium
hydroxide by hydrochloric acid is		$(\mathbf{K}_b = 1.65 \text{ A}_{10})$
b) 4.73	c) 4.5	a) 5.0
2) If 6 mL of 1mole/L hydrochloric acid	is exactly neutrali	ized by 3 mL of potassium
hydroxide, the molarity of potassium hydr	oxide is	4
h) 2 male/L	c) 3 mole/L	a) 2.5 molere
- the determination	of metal ions with E	EDTA by alkalimetric method
is	*****	
es mi mi	e) Erio-T	d) a and b are correct
a) M.Ob) Ph.Ph4) Which solution will be exactly neutralized	ged by 1.0 L of 1.0 m	ole/L of sodium hydroxide.
4) Which solution will be exactly head and	cid	
a) 1.0 L of 0.5 mole/L hydrochloric a		∀
b) 1.0 L of 2.0 mole/L hydrochloric a		**
c) 0.5 L of 0.5 mole/L hydrochloric a		4 .
d) 0.5 L of 2.0 mole/L hydrochloric a5) The oxidation state of carbon in oxala	to ion is	
	c) +4	d) -4
a) $+3$ b) -3	,	,
6) Mohr's method is used only for the de	termination of	
a) chloride and iodide ions	b) brom	ide and chloride ions
1 * 104-	d) for all	halides
- : - of a metal ion indicate	r used in EDTA titra	tion is
	table than metal-EDT	ΓA complex.
more	stable than metal-ED	OTA complex.
1's the must be less sensiti	ve to the metal ion.	
t) 11		
d) all are wrong.8) The pH at the second stoichiometric	point for the titration	n of diprotic acid with potassium
hydroxide is		
a) $pH = 1/2pK_w + 1/2 pK_2 + 1/2 log$	5 - 24II	
b) $pH = 1/2pK_1 - 1/2 \log c_{acid}$		٠.
c) $pH = pK_2 + 1/2 \log c_{salt}/c_{acid}$		
d) a, b, and c are wrong		

6) Write on the methods used to increase the selectivity of EDTA to be able to analysis mixtures of metal ions.

Question (4): Solve the following problems

(15 Marks)

Calculate the pH value of the following solutions;

- (a) 50 mL of 0.2 N sodium hydroxide added to 100 mL of 0.1 N acetic acid $(k_a=1.85\times10^{-5})$.
- (b) 50 mL of 0.1 N hydrochloric acid added to 50 mL of 0.1 N ammonium hydroxide $(k_b=1.85\times10^{-5})$.
- (c) 20 mL of 0.1 N hydrochloric acid with 50 mL of 0.1 N sodium hydroxide.

Good Luck

Examiners	Prof. Dr. Mohamed Yousry El-Shiekh Prof. Dr. Hanaa Salah El-Desoky
	Dr. Marwa Nabeeh El-Nahass

	100		Tanta University			
l		Tanta University Faculty of Science				
l			Chemistry Departme	ent		
l		Exam	nination for freshmen 2 nd level s	tudents (Chemistry)		
L		Course Title	Organic 3	Course Code: CH 2214		
Ĺ	DATE:	JUNE, 2017	TERM: SECOND			
	. ,			TOTAL ASSESSMENT MARKS: 150		

Section (A); Bife	unctional compounds:	[75 Marks]
Answer the folio	owing questions:	•
1- With chemical [15 Marks]	equations, give one method to prepare	e each of the following compounds:
i- Isoprene	ii- Propargyl alcohol iii- Croton	aldehyde
2- Mark ($$) or (X) give briefly the re) for the following statements. With equasion if needed: [20 Marks]	uations, correct the wrong one and
i- Free radi dienes.	ical addition of simple alkenes goes	faster than those of conjugated
ii- Methyl be	nzoate undergoes Claisen condensation	on. ()
	of HCN with methyl vinyl ketone gives	
	ide is obtained by the aldol condensati	

- 3- With chemical equations, illustrate the mechanism of the following reactions and name the type of reaction as well as the final product: [20 Marks]
 - i- Propanal with allyl chloride and triphenylphosphine in the presence of phenyl lithium.
 - ii- Acetophenone with ethyl 2-bromopropionate in the presence of Zn followed by hydrolysis.
- 4- With chemical equations, explain the following conversions: [20 Marks]
 - i- Ethyl acetate into butanone.
 - ii- Diethyl malonate into 2,3-dimethylpentanoic acid.

Tanta University Faculty of Science **Chemistry Department**

CH2101

Final Exam. of chemical Thermodynamic **Level Two-Special Chemistry Students**

First Semester - January 2017

Date; Jan. 5, 2017

Total Assessment Marks: 150

Time allowed; 2 hours

Question (1); choose the correct answer for the following:

1)-The temperature of the system decreases in an;

i)-Adiabatic compression ii) Isothermal compression iii)-Isothermal expansion iv) Adiabatic expansion

2-A thermodynamic state function is;

i)-One which obeys all laws of thermodynamics ii) One which is used in thermochemistry

iii) A quantity whose value depends on only on the state of the system

iv) A quantity which is used in measuring thermal changes

3-When Fe(s) is dissolveed in aqueous HCl in closed vessel the work done is-----

i)- Positive

ii) Negative

iii) Zero

iv) Cannot be defined

4-For an isothermal process, ΔS equals;

ii) q_{rev}/T iii) q_{rev}

iv) T q_{rev}

v) q + w

iv)- For a spontaneous process in an isolated system, the change in entropy is positive

5- ΔS will be highest for the reaction;

i)- $Ca_{(s)} + 1/2 O_{2(g)} \longrightarrow CaO_{(g)}$ iii)- $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$

iv) $N_{2(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$

6-The second law of thermodynamics says that in cyclic process;

i)- Work cannot be converted into heat

ii) Heat cannot be converted into work

iii) Work cannot be completely converted into heat iv) Heat cannot be completely converted into work

7- On passing CO₂ gas in water, its entropy

i)- Remains constant

ii) Decreases

iii) Increases iv) May increase or decrease

8- When does the reaction occur spontaneously on the basis of the relation, $\Delta G^{o} = -RT \ln K$

i) - K = 0

ii) K=1

iii) K > 1

iv) K < 1

9- Spontaneous adsorption of a gas on a solid surface is exothermic process because; i)- Enthalpy of the system increases ii) entropy increases iii) Entropy decreases iv) Free energy change increases

10-The internal energy change when a system goes from state A to B is 40 kJ/mole. If the system goes from A to B by a reversible path and return to state A by an irreversible path, what would be the net change in internal energy;

i)- < 40 kJ

ii) Zero

iii) 40 kJ

iv) > 40 kJ

3-If a closed system goes through a cyclic process; the net work done by the system is necessarily zero.

()

4- Useful work done by a closed system in going from state 1 to state 2 is less than the total work done by the system if $V_2 > V_1$ ()

5- In an isothermal expansion of a gas, entropy of the gas increases.

B- Complete the missing parts on the following table

ΔH°	ΔS^{o}	ΔG^{o}	The nature of the process
Negative		Negative	Spontaneous at all temp
Negative	Negative	Negative	
	Negative	positive -	Nonspontaneous at high temp
positive	positive		Nonspontaneous at low temp
positive	positive	Negative	
	negative	positive	Nonspontaneous at all temp.

C- Define each of the following;

- i) Statistical thermodynamics ii) Internal energy iii) Molar specific heat iv) Carnot cycle
- v) Enthalpy vi) heat engine vii) Enthalpy of combustion viii) Entropy

Question (3);

1-Calculate ΔG for the following reaction at 25°C. Will the reaction occur (be spontaneous)? How do you know? $NH_{3(g)} + HCI_{(g)} \rightarrow NH_4CI_{(g)}$ if $\Delta H = -176.0$ kJ, $\Delta S = -284.8$ J·K⁻¹

2-In the Haber process, ammonia is synthesized form nitrogen and hydrogen according the following equation $N_2 + 3H_{2 (g)} \longrightarrow 2 NH_{3(g)}$. The ΔG^0 at 298 K is -33.3 kJ/mol. Calculate the value of ΔG at 298 K for a reaction mixture that consists of 1.9 atm. of N_2 , 1.6 atm. of H_2 , and 0.65 atm. of NH_3

cop, Lot

		TANTA UI	NIVERSITYFACULTY OF	SCIENCECHEMISTRY D	EPARTMENT
			FINAL EXAM FOR SENI	OR STUDENTS (CHEMIS	STRY SECTION)
	1969	COURSE TITLE:		CHEMISTRY (CH2210)	
A	DATE: 5-6- 2		TERM: SECOND TO	TAL ASSESSMENT MAP	RKS: 50 2 HOURS
Ansv	ver the foll	owing q	uestions:		
1- A)	Chose the	correct	answer and explai	n your answer for	the following
	points:				Marks)
	I) The nuc	lide form	and by the beta de-	# 40	•
	of_		ned by the beta de	cay of " ₁₉ K has a	n atomic number
					
	a. 18			b. 20	
	c. 3			d. 21	
	II) The nuc	lide form	ned by the alpha de	ecay of ²³⁸ 92 U has a	a mass number of
	 -				
	a. 234	•		b. 236	
	c. 23			d. 90	
	III) The rela	ation bet	ween two nuclides'	¹⁰ 20Ca and ⁴⁰ 16S is	
	a. Iso			b. Isotones	
	c. Iso	bars		d. Isomers	-
	IV) If the p	roton nu	ımber or neutron	number is	the nuclide
		special s			
	a. 3			b. 8	
	c. 1 4			d. 25	
B) D	iscus the f	ollowing	points:		(6 Marks)
	a. Plasma	ŧ	b. smoke detector		(
(. uses of n	uclear fis	ssion reactor		

2- A) Calculate the bending energy (by million electron volt) of ²⁰⁸₈₂Pb. The mass of Pb is 207.976644 a.m.u. (Proton mass = 1.00728 a.m.u. and neutron mass = 1.00866 a.m.u.) (4 Marks)

صدة ضمان الجودة المسئلة في الخلف المسئلة في الخلف الخلف المسئلة في المسئلة في المسئلة في المسئلة في المسئلة في المسئلة ا

Tanta University	Final Exam	ination of Chemical Kinetics	
Faculty of Science	Level Two	Course code: CH 2202	
Chemistry Department	June 2017	Total Assessment Marks: 100	TIK -
Special Chemistry Students		Time allowed: 2 h	-9
		# 1 7 Th. 15	Date : 3/6/201 حوظة: الامتحان ف
Question (I): Choose t	he correct answ	er for the following?	حوظه: الأمنحان ف
		· ·	
magnesium was in a	nesium was place	d into 6.0 M HCl. After 25 s, 3.5	0 g of unreacted
magnesium remained. Th	ie average rate at	which magnesium was consume	ed is
(i). 0.14 g/s (ii) . 0.18	8 g/s (iii). 0	.32 g/s (iv) 4.50 g/s	
2-Consider the following	reaction; N _{2 (g)} +	$3 H_{2 (g)} \longrightarrow 2NH_{3 (g)}$	
If the rate of formation of N	VH2 is 9 0×10-4 ma	1/0 4h 0 4 4 0 0	ANT 1-
(i) 4.5×10^{-4} mol/s. (ii) 6	$0.0 \times 10^{-4} \text{ mol/s}$. ((iii) 9.0 ×10 ⁻⁴ mol/s. (iv) 1.4 ×	21 IN2 IS
3-Consider the following		(14) 1.4	10 mol/s
c constact the following i	reaction; NaOH	aq) + HCl (aq)→ NaCl (ac)	$+ H_2O_{(0)}$
The rate of this reaction cou	ald be determined h	by monitoring the change in conce	
(i) H ⁺ (ii) Cl	- (iii) N	$^{\pm}$ (iv) H_2O	entration of:
4-Which of the fallenting	*	(17) 1120	E. S.
reaction taking place in an	coperties could be	used to measure the rate of the	following
Place III dit	open container;	Zn $_{(s)}$ + 2HCl $_{(aq)}$) + H _{2 (g)}
(i)-mass of Zn (ii) solubility o	of HCI (iii) concent	ration of CI (iv) color of the soluti	
5 Complete at 1 and 1			
5-Consider the following r	eaction: 2 S $_{(s)}$ + 3	$3 O_{2 (g)} \longrightarrow 2 SO_{3 (g)} + hea$	t
The rate of this reaction could	be increased by		
(I) Decreasing the temperature	e. (ii)Adding a cata	lyst (iii) Increasing the concentra	tion of C
(iv) Increasing the concentrati	on of SO _{3(g)}	, the concentration	ition of S _(s)
5-Which of the following are r	ococcom, for effect		\$
. Favorable collision geometry	II. Sufficient kin		
i) Lonly (ii) Land II on	ly (iii) II and III o	etic energy. III. Large ΔH. Only (iv) I, II and III	
l Which after the	<i>n</i>		• • • • • • • • • • • • • • • • • • •
i) Nature of reactants	rs affects the rate o	f heterogeneous reactions only?	
iii) surface area of reactants	(ii) tempe	rature of system	
		ration of reactants	
-Collision theory states the	at:		
i) all collisions lead to chem	ical reactions. (ii) Most collisions lead to chemic	.n1
 very few reactions involved 	particle collisions.	(iv) Effective collisions lead to chemic	ai reactions.

(iii) Very few reactions involve particle collisions. (iv) Effective collisions lead to chemical reactions.

Tanta University - Faculty of Science - Department of Chemistry

Final Examination for Second Level Students **Chemistry Section**

Course Title:	0	i- ol	Faculty of Ballings
	Urgar	nic Chemist r y 1	Course Code: CH2109
Jan. 2017	Term: First	Total Marker 750 ha	Source Odde, CH2109
	10111.11136	Total Marks: 150 Marks	Time allowed: 2 Hours

Answer the following questions:

1) Illustrate by mechanistic equations the following:	(40 Marks)
a- An addition - elimination mechanism.	(8 marks)
b- An elimination - addition mechanism.	
c- Sulphonation of naphthalene.	(8 marks)
d- Liebermann's nitrosation reaction of phenol.	(8 marks)
e- Mechanism of formation of aryl diazonium salt and its coupling with phenol	(8 marks)
2) Attempt the following conversions:	(40 Marks)
a- Cyclohexanone to biphenyl - 4,4 - dicarboxylic acid.	(8 marks)
b- Phthaloyl chloride to anthracene - 9 - sulphonic acid.	(8 marks)
c- 2,2 - Dimethyl biphenyl to fluorene.	(8 marks)
d- Benzene to m-chloro bromobenzene.	•
e- Benzene to both anthranilic acid and p-aminobenzoic acid.	(8 marks) (8 marks)
3) a- NH ₂ is an activating group, that is also o/p-directing, while NH ₃ is a deactive	rating group
and m-directing in SEAr. Explain in detail this fact.	(16 marks)
b- Attempt the following conversions:	(24 marks)
i) Benzaldehyde to 9 - aminophenanthrene.	(8 marks)
ii) Acetylene to hippuric acid.	(8 marks)
iii) Aniline to 7- amino-1- methyl naphthalene.	(8 marks)

Tanta University – Factulty Of Science – Department Of Physics Examination For 2nd Level Students Of Chemistry Group (Credit Hour System)

Course Title	Crystallogr	Course Code : PH2191	
Date:1January 2017	Term:First	Total Assessment Marks :50	Time Allowed: 2Hours

(Answer the following questions)

The first question (12.5 Marks)

a-Define and explain by drawing the following:-

1- the plane of symmetry

2- the crystal lattice

3- the unit cell

4- primitive and non primitive cells

5- zones and zone axes

b- what is the Miller index of plane intercepts on a,b,c

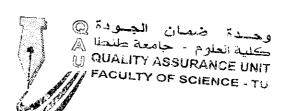
$$\frac{1}{4}$$
 , $\frac{2}{3}$, $\frac{1}{2}$

The second question (12.5 Marks)

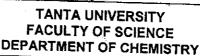
- a- show by drawing how the x-rays are produced and write four of its characteristics
- b- Describe how the two types of x-ray spectra are produced

The third question (12.5 Marks)

aelo ei Miero



TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY


EXAMINATION FOR SOPHOMORES (SECOND YEAR) STUDENTS OF CHEMISTRY

1969	COURSE TITLE:	ORGANIC 3		COURSE CODE: CH2214
DATE:	MAY, 20016	TERM: SECOND	TOTAL ASSESSMENT MARKS: 150	TIME ALLOWED: 2 HOURS
	Section (A) Bifu		(75 points)
	1] Put $(\sqrt{\ })$ or (x)	and correct the v	vrong answer (Explain by equati	ons): (20 noints)
	a) Addition of H	Cl to 6-heptenoic	acid gave 7-chloro-heptanoic aci	d. ()
	b) Addition of C	H ₃ MgCl to pent-3	3-ene-2-one followed by hydrolys	is gave 25 % of 2
	methyl- pent-3-e	ne-2-ol.	in the second way and all only g	
			tween benzaldehyde and propana	()
	reduction with N	aRH, gave 1 nho	nyl-but-3-ene-1-ol.	·
				()
	a) Emyracciate i	s much stronger	acid than acetoacetic ester.	()
	a) Ethyl bromo a	2,3,6-tetrahydro ite to 2-methyl-po	ol. phthalic anhydride. entanoic acid.	
	3] Write the mech			
	a) Ethyl formate -	+ ethyl acetate (N	$(aOH/H^{+}) \rightarrow ethyl formyl acetat$	e
	b) 1,4-Addition of			
		•	•	
	4] Complete the fo		is and <u>name the final products</u> : (20 points)
	2] Oleic acid <u>k</u>	COH H ₃ (O ⁺	

3] Benzophenone + Acetone

EXAMINATION FOR SECOND YEAR STUDENTS (DOUBLE MAJOR PROGRAMS)

COURSE TITLE: INSTRUMENTAL ANALYSIS (1) DATE: JUNE 4, 2016

TERM: SECOND TOTAL ASSESSMENT MARKS: 100

COURSE CODE: CH2244 TIME ALLOWED: 2 HOURS

Answer the following questions

Question (1):

A. Answer the following:

[20 marks]

- 1. Illustrate with drawing the "Jablonisky diagram" and define the different processes of dissipating energy.
- 2. Explain with examples, the different electronic transitions in organic and inorganic molecules.

B. Write short notes on (THREE ONLY) of the following:

[18 marks]

- 1. The mole-ratio method to determine the stoichiometry of a complex.
- 2. The atomization steps in the flame technique of the atomic absorption spectroscopy.
- 3. The schematic diagram of the flame photometer and what is the idea of working?
- 4. Determination of dissociation constant (pK_a) using UV-VIS absorption spectroscopy.

Question (2):

A. In brief, Compare between each pair of the following (FOUR ONLY):

[20 marks]

- 1. Potassium bromide and Nujol technique techniques in IR measurement.
- 2. Phototube and Photomultiplier.
- 3. Gratings and filters monochromators.
- 4. Nernst glower and Glober lamps.
- 5. Single and double beam spectrometers.

B. Mark ($\sqrt{}$) or (X) and give the reasons for each:

[15 marks]


- 1. In an ultraviolet-visible spectrometer, the sample placed after the monochromator?
- 2. Excitation source in flame photometer is "Gas discharge lamp".
- 3. Internal conversion is radiative process from excited singlet to ground states.
- 4. Unknown concentration of saturated hydrocarbons can be determined by UV spectrometers.
- 5. Spectra of Nitrogen molecule can be recorded by Infrared spectrometer.

Question (3)

A. Describe what it does and how it works:

[15 marks]

- 1. Photomultiplier tube.
- 2. Hollow cathode lamp.
- 3. Absorption filters.

		TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS	
	EXAMINATION FO	R SOPHOMORES (SECOND LEVEL) STUDENTS OF CHEMISTRY (SE	المستوى الثاني شعبة كيمياء (MESTER 1
1969	COURSE TITLE:	الكترونيات وأشباه موصلات Electronics and Semiconductors	COURSE CODE: PH2181
DATE:27	DECEMBER 2016	TERM: FIRST TOTAL ASSESSMENT MARKS: 50	TIME ALLOWED: 2 HOURS

Answer The Following:

First question:

{10 Marks}

A) Define the following:

(4 Marks)

1- Donor (semiconductors).

2- Dielectric constant.

3- Photoelectric effect

4-Depletion Region

B) Chose the correct answer:

(6 Marks)

- 1) For any electric circuit, the maximum value of dissipated power occurred when:
 - a) Internal resistance > external resistance b) Internal resistance < external resistance
 - b) Internal resistance = external resistance.
- 2) In an AC current, pass through Ohmic resistance, the following items change with time:
 - a) Current.
- b) Voltage.
- c) Phase angle. d) All above maintained a, b and c.
- 3) In Half wave rectifier circuits, the output frequency is
 - a) Equal to the input frequency b) less than the input frequency c) greater than the input frequency
- 4) In Full wave rectifier circuits, the output frequency is
 - a) Equal to the input frequency b) less than the input frequency c) greater than the input frequency
- 5) In Half wave rectifier circuits, the output voltage is
 - a) Equal to the input voltage b) less than the input voltage c) greater than the input voltage
- 6) In Full wave rectifier circuits, the output voltage is
 - a) Equal to the input voltage b) less than the input voltage c) greater than the input voltage

Second question:

{14 Marks}

A) Write short notes on the following:

(6 Marks)

- I) Seven-Segment Display.
- II) Half wave rectifier circuits.
- B) Design a resonance circuit to give an output signals wave form 100 times the input signal, draw the circuit, and calculate the magnitude of every element you may be use.

 Given:, the maximum input signals $V_S = 0.15 \text{ V}$ (4 Marks)
- C) In an AC Circuit which $l = lo \sin \omega t$, prove that, the power, p

Given by
$$P = \frac{I_o}{\sqrt{2}} \cdot \frac{V_o}{\sqrt{2}} \cos \emptyset$$
 (4 Marks)

Please turn over

Third question:

{13 Marks}

- A) A capacitor with capacity $C=5~\mu F$ connected in series with resistor equal R=500 Ohm and also with ac current has e.m.f. equal V=200 Volt, its frequency equal 50 Hz; Determine the following:
 - 1) Impedance of capacitor.
 - 2) Total impedance of capacitor and resistor.
 - 3) Current-Voltage across resistor.
 - 4) Voltage across capacitor.
 - 5) Phase angle.

(5 Marks)

- B) Resistance, capacitance and a coil connected in series, deduce how you could determine the following:
 - 1) Resonance frequency.
 - 2) the impedance of the circuit Given: $I = I_0 \sin \omega t$

(4 Marks)

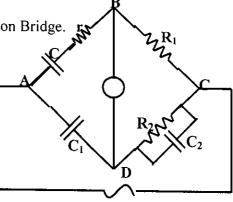
- C) Discuss briefly the application of the following:
 - 1. Resonance circuit
 - 2. Zener diode.
 - 3. Photodiode
 - 4. Optocoupler

(4 Marks)

Fourth guestion:

{13 Marks}

- a) Design a circuit to give an output SQUARE wave form at 1.5 Volts, knowing that the input signal is sinsdual wave form, and draw the circuit. (4 Marks)
- b) Design a circuit to give an output fifth times the input voltage? If the input voltage is (6 volts) calculate the actual output voltage?


(4 Marks)

- 1) First- if the diode is (silicon).
- 2) Second-if the diode is (germanium)

c) Deduce the two balance equations of the mention Bridge.

Maintain the application of such similar bridge in

Materials science.

(5 Marks)

Examiners

Prof. Talaat M. Meaz

Dr. Magda Zaki

Tanta University Faculty of Science Department of Chemistry

Exam for Level Two., chemistry section

CH 2204

Chemistry of Transition Elements	Term: Second
June 2016 Total Assessment Marks: 100	Time Allowed: 2 h
Answer the following questions:-	
1~) Complete the following:	(25 marks)
a) How would you define the transition elements: 1	
b) Octahedral complexes are more stable and more	
because 1, 2 and tetrahedral complexes a	re favored because
1, 2, 3, 4	
c) The colour in transition metal compounds arises	from 1, 2, 3
2-) Why are?	(25 marks)
a) Zr and Hf compounds are similar.	
b) Compounds of Ti (IV) and Zn (II) white.	
c) The size of transition elements decrease from lef	t to right.
3) Discuss the following:-	(25 marks)
a) The splitting of d ³ ,d ⁴ ,d ⁵ and d ⁶ octahedral low sp	in and high spin.
b) The splitting of d ⁴ and d ⁸ square planer.	•
C) Draw the shape of d-orbitals.	
以) Write down on the following:-	(25 marks)
a) - The rusting of iron	(no max m)
b) - The electronic structure and oxidation state	of Scandium group.
c) – Nonstoichiometry.	

"GOOD LUCK"

Examiners: Prof. Dr. Gad El-Hefnawy

DATE:

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY

EXAMINATION FOR SECOND STAGE STUDENTS OF SPECIAL CHEMISTRY PROGRAM.

COURSE TITLE: INSTRUMENTAL ANALYSIS COURSE CODE: CH2206

TOTAL ASSESSMENT ASSESSMENT MARKS: 150

TIME ALLOWED: 2 HOURS

Answer the following questions:

The first question (50 marks).

1. Ten milliliters aliquots of a natural water sample were pipetted into five 50 mL volumetric flasks. Followed by exactly 0.00, 5.00, 10.00, 15.00 and 20.00 mL of a standard solution containing 11.1 ppm of Fe³⁺ were added to each followed by an excess of thiocyanate ion to give a red complex Fe(SCN)²⁺. After dilution to the volume the absorbance measured (cell length 1cm), the results were tabulated as follows:

(20 marks)

Fe ⁺³ ppm	0.00	5.00	10.00	15.00	20.00
Absorbance A	0.215	0.424	0.685	0.826	0.967

- a- What does the equation of straight line that fit these data? What do the slope and intercept represent? (15 marks)
- b- What is the concentration of [Fe⁺³] ppm in water sample? (5 marks)
- c- What is the amount of Fe⁺³ in micro-gram present in 500 mL water bottle sample? (5 marks)
- 2. A solution containing 6.23 ppm KMnO₄ has a transmittance of 19.5% in 1.00 cm cell at 425 nm, calculate the molar absorptivity of KMnO₄ at 425 nm.(15 marks).
- 3. Draw the photometric titration graph for the titration of Cu²⁺ and Bi³⁺ with EDETA at 745 nm. (10 marks)

The second question: (50 marks)

- 1. Mention the detector and the principle of its operation that used in the following spectrometers: UV- VIS, IR, fluorescence, atomic absorption, and NMR. (20 marks)
- 2. Explain the base-line method for determination of absorbance in IR spectroscopy. (10 marks)
- 3. Mention the techniques of measurements of IR spectra of solid samples and liquids. . (10 marks)
- 4. Draw a block diagram for Reflectance spectrometer. What are the chemical applications of reflectance spectroscopy? (10 marks)

Please turn the paper on

و دة ضمان الجودة (المحددة ال

TANTA UNIVERSITY **FACULTY OF SCIENCE** DEPARTMENT OF CHEMISTRY

	EXAMINATION FOR SOPHOMORES (SECOND LEVEL) STUDENTS OF SPECIAL CHEMISTRY SECTION				
	COURSE TITLE:	STEREOCHEMISTRY		COURSE CODE:CH 2212 TIME ALLOWED:2 HOURS	
DATE: 1	JUNE , 2016	JUNE , 2016 TERM: SECOND TOTAL ASSESSMENT MARKS: 100			
Answei	r The Follow	ing Questions:	Mino.		

Victorions .	
1) Compare between each of the following:	(12 M/m.)
i- Stereoselective addition to air and the a a a state	(13 Marks)

- i- Stereoselective addition to cis- and trans-2,3-diphenyl-2-pentene.
- ii- Diastereomers and Racemic mixture.
- iii- Cationic and anionic racemization.
- 2)a-Describe the separation of (±)-2-aminopentane by (R)-(-)-mandelic acid.(18 Marks) b-Describe the separation of (±)-phenylglycine using chiral stationary phase (C.S.P).
- 3) Mark ($\sqrt{\ }$) or (X) and correct the false statments : (16 Marks) i- Mutarotation is the conversion of glucose to lactose. ii-The streching vibration of C=C bond for trans-2-butene is slightly higher than that of cis- isomer, while the stretching vibration of C-H bond for trans-isomer is very lower than that of cis-isomer with IR-Spectra. iii-Trans-isomer of 2-pentene has slightly lower λ_{max} and very lower ϵ than that of cis-isomer with UV-spectra. iv-Fumaric acid readily forms a cyclic anhydride with heating while maleic acid does not give an anhydride under the same conditions.)
- 4)a-Starting with acetic acid explain the synthesis of (±)-3-ethyl-2-hexanol. (18 Marks) b-Using Camphor asymmetric reagent describe the synthesis of (2S)-2-ethyl-1-hexanol.
- 5)a-Using Mayer's asymmetric reagent describe the synthesis of (3R)-3-phenylpentanoic acid. (9 Marks)
 - b-The chemical shift of ethylenic proton $\delta_{\rm H}$ was found experimentally to be 7.55 ppm for α - methyl ethyl cinnamate. What is the geometrical isomerism of the above ester? (substituent constants for chemical shift are : $-Ph_{gem} = 1.35$, $-COOEt_{cis} = 1.25$, COOEt_{trans} = 0.47, $-CH_{3 cis} = -0.26$, $-CH_{3 trans} = -0.29$ ppm). (9 Marks)
- 6)a-Draw and name the isomers of the following compounds (with comment):(12Marks) i- Aldotetrose. ii-Tartaric acid iii-Dichlorocyclohexane.
 - b- Draw the following compounds:

(5 Marks)


i- (S)-3-Methylhexane.

ii- (2R,3S)-2,3-Dibromopentane.

Examinars:

Prof.Dr. Adel Selim

Dr. Mohamed Azam

	Tanta University- Faculty of Science-Chemistry Department				
	Examination for second level students of chemistry section				
	Course Title	Chemical Kinetics	Course code:CH2240		
Date:	4-6-2016	Total Assessment Marks: 100	Time Allowed: 2 hrs		

Answer the following questions

(20 Marks for each)

- 1- a- write down the rate equation for chemical reaction and show how can you determine it?
 - b- The decomposition of 2HI \longrightarrow H₂ + I₂ at 308°C has the following data

Initial pressure of HI /atmo.	0.1	1
Half life time/min.	135	13.5

Find out the order and calculate the rate constant for this reaction

- 2- a- Discuss the factor affecting the reaction rate?
 - b- Write short notes about characteristics, classification of Chemical Catalystes, and discuss the mechanism of Catalysis by enzymes.
- 3- a- Define the order of chemical reaction and discuss the initial rate method for determine it.
 - b- For the reaction 2NO + Br₂ 2 NOBr The following data were obtained

Initial rate	Initial [NO]	Initial [Br ₂]
12	0.1	0.1
24	0.1	0.2
36	0.1	0.3
48	0.2	0.1
108	0.3	0.1

Write down the rate equation which is consistent with this data and calculate the value of the rate constant of this reaction.

- 4- -a- What is the structure of chain reaction?
 - b- Confirm that the rate equation for the chain reaction $H_2 + Br_2 \longrightarrow 2HBr$ is given by

$$\frac{\text{d[HBr]}}{\text{dt}} \qquad \frac{\text{k [H_2] [Br_2]}^{3/2}}{[\text{Br}_2] + \text{k[HBr]}}$$

- 5- a- Calculate the $t_{1/5}$ for 1^{st} and 3^{rd} order of the reaction.
 - b- For the reaction proceeded in a sequence of reversible steps

$$A+B \xrightarrow{K_{-1}} C+D$$

$$C \xrightarrow{K_{-2}} E+F$$

Prove that the equilibrium constant for this reaction is the product of all rate constants ratio

Best wishes

Examiner Prof.Dr. Hosny El-Daly

6	TANTA UNIVERSITY						
		ULTY OF SCIENCE	ļ				
	CHEMISTRY DEPARTMENT						
	FINAL EXAM FOR SOPHOMORE STUDENTS (CHEMISTRY SECTION)						
1980	COURSE TITLE:	NUCLEA	R CHEMISTRY (CH2210)	TIME ALLOWED:			
DATE:	JUNE 06, 2016	TERM: SECOND	TOTAL ASSESSMENT MARKS: 50	2 HOURS			

Question 1:

(20 Marks)

A) Compare between each of the following:

- i) Chemical reactions and nuclear reactions.
- ii) Isotopes, isobars and isotones. Illustrate with examples.
- iii) The external and the internal beam radiation for cancer treatment.
- iv) Positron emission and electron capture.
- <u>B)</u> If the half-life of a hypothetical isotope is 15 years, how many grams do remain if 20 g decays after 45 years?

Question 2:

(30 Marks)

A) Explain each of the following:

(24 Marks)

- 1) Radioactive displacement law.
- 2) The application of radioisotopes in finding leaks and blockages.
- 3) Some radioactive nuclides are especially damaging because they tend to concentrate in particular parts of the body.
- 4) Sterile insect technique.
- 5) The role of fuel rods, control rods and the moderator in the nuclear reactor core.
- 6) How 202.5 MeV are resulted from uranium-235 fission?
- 7) On the contrary of gamma radiation, alpha and beta radiation are more body harmful when emitted from internal sources and are less harmful when emitted from external sources.
- 8) Pebble-bed nuclear reactor: contents and advantages.

B] Show by diagram only:

(6 Marks)

- 1) The liquid drop model of the uranium fission.
- 2) Nuclei belt of stability diagram. (Show the regions)

Good Luck

Examiners: Prof. Kamal Elbaradie

Dr. Wael A. Amer

DATE: 1

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY

EXAMINATION FOR SOPHOMORES (SECOND LEVEL) STUDENTS OF SPECIAL CHEMISTRY SECTION

1960				
1960	COURSE TITLE:	STEREOCHEMISTRY		COURSE CODE:CH 2212
DATE: 1	JUNE , 2016	TERM: SECOND	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED:2 HOURS

Answer	The	Follo	wing	Questions	٠

1)	Compare between each of the following:	(13 Marks)

- i- Stereoselective addition to cis- and trans-2,3-diphenyl-2-pentene.
- ii- Diastereomers and Racemic mixture.
- iii- Cationic and anionic racemization.
- 2)a-Describe the separation of (±)-2-aminopentane by (R)-(-)-mandelic acid.(18 Marks) b-Describe the separation of (±)-phenylglycine using chiral stationary phase (C.S.P).
- 3) Mark (√) or (X) and correct the false statments:

 i- Mutarotation is the conversion of glucose to lactose.
 ii-The streching vibration of C=C bond for trans-2-butene is slightly higher than that of cis- isomer, while the stretching vibration of C—H bond for trans-isomer is very lower than that of cis-isomer with IR-Spectra.
 iii-Trans-isomer of 2-pentene has slightly lower λ_{max} and very lower ε than that of cis- isomer with UV- spectra.
 iv- Fumaric acid readily forms a cyclic anhydride with heating while maleic acid does not give an anhydride under the same conditions.
- 4)a-Starting with acetic acid explain the synthesis of (±)-3-ethyl-2-hexanol. (18 Marks) b-Using Camphor asymmetric reagent describe the synthesis of (2S)-2-ethyl-1-hexanol.
- 5)a-Using Mayer's asymmetric reagent describe the synthesis of (3R)-3-phenylpentanoic acid.

 (9 Marks)
 - b-The chemical shift of ethylenic proton δ_H was found experimentally to be 7.55 ppm for α methyl ethyl cinnamate. What is the geometrical isomerism of the above ester? (substituent constants for chemical shift are: -Ph_{gem} = 1.35, -COOEt_{cis} = 1.25, COOEt_{trans} = 0.47, -CH_{3 cis} = -0.26, -CH_{3 trans} = -0.29 ppm). (9 Marks)
- 6)a-Draw and name the isomers of the following compounds (with comment):(12Marks) i- Aldotetrose. ii-Tartaric acid. iii-Dichlorocyclohexane.
 - b- Draw the following compounds:

(5 Marks)


i-(S)-3-Methylhexane.

ii- (2R,3S)-2,3-Dibromopentane.

Examinars:

Prof.Dr. Adel Selim

Dr. Mohamed Azam

Answer the following questions

1- Show by equations the reaction mechanism of the following: Mark 40

- a- Addition of HBr to Propene in presence of Peroxide.
- b- Reaction of hydroxylamine with a carbonyl compound and factors affecting such reaction.
- c- Favorski re-arrangement.

2- Answer by mechanism the following:

Mark 40

- a- Using Carbon isotope show how you interpretate the reaction of acetate with BrCN
- b- Discuss by examples the reaction of Ambident Nucleophiles
- c- Cannizaro and crossed Cannizaro reaction. Show the mechanism.

3- Show by equations the following:

Mark 35

- a) Write the mechanism of treatment of 2-bromo-2-methylbutane with ethanol.
- b) Benzil-Benzilic acid re-arrangement. Show the mechanism'
- c) SN² mechanism and factors affecting such reaction. Explain

4- Answer the following questions:

Mark 35

- a- Addition of HCl to 3, 3-dimethyl-1-butene, Show the mechanism.
- b- Neighbouring group participation reaction type and its stereochemistry. Explain.
- c- How can you prepare DDT 'Show the mechanism

ود مدة ضمان الحديدة في الحديدة المحادة Prof. Dr. Mahmoud Tahmy كالم المحادة العادم - حامعة طلنطا QUALITY ASSURANCE UNIT

TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF CHEMISTRY

FINAL EXAMINATION OF (SECOND YEAR) STUDENTS

COURSE	Chemistry of Main groups	
TITI E.		COURSE CODE: CH 2107
(1) LE:	For all sections	

DATE: 29,DEC.,2016

16 TERM: FIRST TOTAL ASSESSMENT MARKS:100

TIME ALLOWED: 2 HOUR

Please answer all The following questions:

1-) Compare between each of the following: a-) The reaction of groups I & II elements with nitrogen b-) Carbon and group IV elements c-) ortho and para hydrogen d-) The hydrides of group V elements e-) The reaction of group II elements with water	(25 marks)	(5 marks) (5 marks) (5 marks) (5 marks) (5 marks)
 2-) Comment on each of the following: a-) Covalent hydrides are seldom completely covalent b-) Beryllium salts are acidic when dissolved in water c-) The elements of group II elements are hard than group I d-) Graphite can conduct electricity e-) Nitrogen is unable to form pentahalides 	(25marks)	(5 marks) (5 marks) (5 marks) (5 marks) (5 marks)
3-) Write short notes on each of the following: a-) Silicones compounds b-) Interhalgons compounds c-) Sulphorous acid series d-) Preparations and reactions of diborane e-) Hydrides of group VI elements		(5 marks) (5 marks) (5 marks) (5 marks) (5 marks)
4-) a-)Give reasons for trivalency and monovalency in group b-) Explain why HF has low acidic strength compared with H c-) Compare between alkanes and silanes d-) Why fluorine is unable to form oxyacids e-) Why SiCl ₄ is hydrolysed but CCl ₄ is not hydrolysed		(5marks) (5 marks) (5 marks) (5 marks) (5 marks)

Good Luck

Examiners: Prof. Dr: Kamal Elbaradie, Prof. Dr: saeed Anwer and Dr: Dina Abd EL-Aziz

		TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTR	Y
0361		FINAL EXAM FOR SECOND YEAR S	STUDENTS
	COURSE TITLE:	KINETIC THEORY OF GASES	COURSE CODE: CH2103
DATE	12 JANUARY, 2017	TOTAL ASSESSMENT MARKS: 50	TIME ALLOWED: 2 Hrs

Answer All Questions. 50 marks distributed equally for all questions

- 1- Discuss the molecular effusion of gases.
- 2- A) Discuss the barometric formula.
 - B) In one dimensional random walk of 4 steps,
 - i. Write down all possible sequences to reach point 2 after 4 steps.
 - ii. What is the probability to reach point 2 after 4 steps?
- 3- A) Discuss the kinetic theory of gas viscosity.
 - B) The viscosity of hydrogen gas at 0° C is 8.41 x 10^{-5} poise; determine the mean free path of the molecules at this temperature and 1 atmosphere.
- **4- A)** Derive an equation explaining the relation between entropy and probability.
 - B) Calculate the average energy for triatomic linear and nonlinear molecules.

Best Wishes

Prof. Ahmed Borhan Zaki

18 7	TANTA UNIVER	RSITY FACU	LTY OF SCIENCE	DEPA	ARTMENT OF CHEMISTRY
	EXAMIN			SECOND LEVEL	.) STUDENTS OF
		SPE	CIAL CHEMISTI	RY SECTION	, 0.00E((10,0)
O Jesy Company	COURSE TITLE:	STEREOCHI			COURSE CODE:CH 221
DATE: 31	MAY, 2017	TERM: SECOND	TOTAL ASSESSM	ENT MARKS: 100	TIME ALLOWED: 2 HOURS
Answe	r The Followi	ng Questions :			
1) Desc	ribe the separ	ation of each o	f the following		(10 Montre)
a- (±)-	3-Aminohexan	e using (R)-(-)-	mandelic acid	•	(18 Marks)
b- (±)-	Phenylglycine	using chiral sta	tionary phase (C.S.P.).	
2)a- De	scribe the synth	nesis of (±)-3-et	hyl-2-hexanol.		(18 Marks)
b-Usi	ng Camphor as	ymmetric reage	ent describe the	synthesis of (25	S)-2-ethyl-1-hexanol.
o Mu	K(V) Or (A) ar	nd correct the	laise statments	;	(12 Marks)
a- Iviu	tarotation is the	conversion of	glucose to gala	ctose.	()
U-11al. with	is- sumbene na:	s siightly lower	λ_{\max} and very	higher ε than	that of cis-isomer
	UV- spectra.	-4 to 41 - 4 - 4			()
d- Fun	-asymmetric C	atom is that ato	m which attace	ed with four sim	ilar groups. ()
not c	nanc acid readi	ly give a cyclic	anhydride with	h heating while	maleic acid does
1100 8	give all alliguin	de under the sai	me conditions.		()
4) Desc	ribe each of th	e following:			(15 Marks)
a- Stere	oselective add	ition to cis- and	trans-2 3-diph	enyl-2-hexene	(15 Marks)
b- Dias	tereomers and	racemic mixtu	re .	chyl-2-hexene	•
	ility of cyclic h		200		
5)a-Usii	ng Mayer's asyr	nmetric reagen	t describe the sy	yntheses of (3R)-3-phenylhexanoic
acid.					(9 Marks)
b-The	chemical shift	of ethylenic pro	oton $\delta_{ m H}$ was fou	and experimenta	ally to be 7.55 npm
ior P	'n-CH=C(Me)-	-COOMe. Wha	it is the geometr	rical isomerism	of the above ester?
Write	e its chemical n	iame.(substituei	nt constants for	chemical shifts	are: $-Ph_{} = 1.35$
-CO	$OMe_{cis}=1.25,-C$	$OOMe_{trans} = 0.6$	$67, -Me_{cis} = -0.26$	$6, -Me_{trans} = -0.2$	9 ppm). (8 Marks)
6)a. Dra	wand name the	. i.a	C 11		
i_3 4_	w and name the Dichlorohexane	isomers of the	following com		omment):(11Marks)
	w the following		10-2-pentanol.	111-1,4-Di	nethylcyclohexane.
		g compounds : se. ii-(2S,3S)-	Tartaria asid	::: (27 ED) 2	(9 Marks)
. (21)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. II-(23,33)-	- 1 attaire acid.	111-(2Z,5K)-2,	5-Dibromohextane.

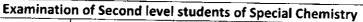
Examinars:
Prof.Dr. Adel Selim

Dr. Mohamed Azam

Dr. Atef El-Garably

TANTA UN	IVERSITY	FACU	LTY OF SCIENCE	DEPA	ARTMENT OF CHEMISTRY
EXA	MINATION			SECOND LEVEL	.) STUDENTS OF
			CIAL CHEMIST		JODENIA OF
COURSE TITE	E: ST	EREOCHI			COURSE CODE:CH 221
DATE: 31 MAY, 2017	TERM	: SECOND	TOTAL ASSESSM	ENT MARKS: 100	TIME ALLOWED: 2 HOURS
Amorrow Til. Til.					THE ALLOHED.Z HOOK
Answer The Foll	owing Qu	uestions:			
1) Describe the se	paration	oi each o	f the following	; :	(18 Marks)
a- (±)-3-Aminohe	xane usin	ig (K)-(-)-	mandelic acid		
b- (±)-Phenylglyc	me using	cnirai sta	tionary phase (C.S.P.).	
2)a. Describe the s	unthosia c	sf (43) 2 as			
2)a- Describe the s	ynunesis (or (≠)-3-et	nyl-2-hexanol		(18 Marks)
o-Osing Campilo	1 asymme	eure reage	ent describe the	synthesis of (2)	S)-2-ethyl-1-hexanol
3) Mark (√) or (X	and co	rroot tha	folgo status américa		/4635 3
a- Mutarotation is	s the conv	version of	alueses to col-	.	(12 Marks)
b-Trans- stillbene	hae eliat	othy lower	glucose to gala	close .	that of cis—isomer
with UV- spects	.a mas sust	TILY TOWER	Max and very	nigher & than	that of cis—isomer
c- The asymmetri		is that ata	m which offer	المائد المائدية المائدية المائدية	()
d- Fumaric acid re	e C-atom eadily giv	e a cyclic	onbudaida wit	u wim tour sim	llar groups. ()
not give an anhy	odriđe una	der the cor	amiyuride wil	n neating while	maleic acid does
8	, aride and	der the sai	ne conditions.		()
4) Describe each o	f the foll	owing:			(15 Marks)
a- Stereoselective	addition t	to cis- and	trans-2.3-dinh	envl-2-hevene	(15 Marks)
b- Diastereomers	and racer	nic mixtu	re .	onyr 2-nexene	•
c- Stability of cycl					
	•			•	•
5)a-Using Mayer's	asymmetr	ric reagent	t describe the s	vntheses of (3R)-3-phenylhexanoic
acid.	•	Ü		,	(9 Marks)
b-The chemical si	hift of eth	ylenic pro	oton o n was for	ınd experimenta	ally to be 7.55 ppm
for Ph-CH=C(N	Ae)-COO	Me. Wha	t is the geomet	rical isomerism	of the above ester?
Write its chemic	al name.(substituer	nt constants for	chemical shifts	are: $-Ph_{gem} = 1.35$,
-COOMe _{cis} =1.2:	5,-COOM	$\hat{e}_{trans} = 0.6$	7,-Me $_{cis}$ = -0.26	$6Me_{trans} = -0.2$	9 ppm). (8 Marks)
				•	
6)a-Draw and name	the isom	ers of the	following com	pounds (with co	omment):(11Marks)
1-3,4-Dichlorone	xane.	11-3-Brom	o-2-pentanol.	iii-1,4-Dii	nethylcyclohexane.
b- Draw the follo	wing com	ipounds :	-	•	(9 Marks)
i- (2R,3S)-Aldote	etrose. i	i-(2S,3S)-	Tartaric acid.	iii-(2Z,5R)-2,	5-Dibromohextane.

Prof.Dr. Adel Selim


Examinars:

Dr. Mohamed Azam

Dr. Atef El-Garably

TANTA UNIVERSITY FACULTY OF SCIENCE CHEMISTRYDEPARTEMENT

Course title: 27/5/2017

Organic Chemistry (4)
Total Marks: 150

Course code: CH 2216
Time allowed: 2 hrs.

Answer the following questions:

1- Answer by mechanism the following:

- a- Addition of water to C=O group. Discuss the mechanism and factors affecting such reaction.
- b- Effect of acid on 1,2-diols.
- c- Explain in details the Benzyne mechanism.
- d- Hoffmann hypobromide reaction. Show the mechanism.

2- Explain by mechanism the following reactions:

- a- Transformation of cumene to phenol and acetone. Show mechanism.
- b- Diazo coupling mechanism. Explain in details.
- c- Explain by mechanism how cyanide ion can be used as ambident nucleophiles.
- d- Addition of HCl to 3,3-dimethyl-1-butene. Show mechanism.

3- Answer the following reaction:

- a- Reaction of Bromine with benzene ring. Show the mechanism.
- b- Discuss in details the factors affecting of aliphatic nucleophilic substitution reaction.
- c- Explain the both Saytzeu and Hoffmann rules in elimination.
- d- 1,2-chlorohydrin can act as neighbouring group participation. Explain the mechanism.

4- Answer the following reactions:

- a- Correlate between the mechanism of both SN1 and SN2 mechanism.
- b- Addition of Br2to alkenes is Trans addition. Explain the mechanism.
- c- Explain the mechanism of Elimination reaction.
- d- Show the mechanism of SNi and SNi

Prof. Dr. Mahmoud Fahmy	Kind regards	Prof. Dr. Mahmoud Fahmy
-------------------------	--------------	-------------------------

60	Tanta University Faculty of Science				
Charles I		Chemistry Department			
/IIC	Examin	ation for Second Level Students (Cr	edit Hours System)		
1017	Course Title	Stereochemistry	Course Code: CH2246		
Date:	31/ 5/ 2017	Total Assessment Marks: 50	Time Allowed: 2 hrs		

1. Draw the following isomers:

(6 marks)

- i. (R)-2-Aminopropanoic acid
- ii. (S)-2-Chloro-1-butanol
- iii. (2R, 3S)-Aldotetrose

2. Discuss the following:

(12 mark)

- i. Conformations of n-butane
- ii. Synthesis of (±)-3-methyl-2-pentanol
- iii. Separation of (±)-2-aminopentane
- 3. The chemical shift for ethylenic proton (δ H) was found experimentally to be 5.6 ppm for 2-chloro-2-pentene, (Et gem=0.44, Me trans=-0.29, Me cis=-0.26, Cl cis=0.19, Cl trans=0.03). Determine the geometrical isomerism of the above alkene?
 (4 marks)

4. Define each of the following:

(12 mark)

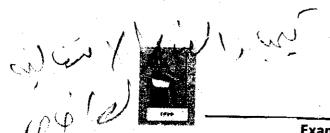
- i. Specific rotation
- ii. Pairs of enantiomers
- iii. Racemic mixture

5. Give reason (writ equations if possible):

(4 marks)

- i. Maleic acid readily forms a cyclic anhydride, while fumaric acid does not
- ii. Meso-tartaric acid is optically inactive compound

6. Compare between each of the following:


(12 mark)

- i. Stereoselective hydroxylation of cis- and trans-3-methyl-2-phenyl-2-pentene
- ii. Racemization of (-)-mandelic acid and (+)- α -chloroethylbenzene
- iii. Conformations of 1,2- and 1,3-disubstituted cyclohexane

Prof. Dr. Adel selim

Dr. Mohamed Azaam

Dr. Atif El-Gharably

Tanta University Faculty of Science Department of Chemistry

Exam for Level Two., chemistry section

CH 2204

Chemistry of Transition Elements

Termi Second

June 2017

Total Assessment Marks: 100

Time Allowed: 2 h

Answer the following questions:-

1) Comment on each of the following:

(25 marks)

- a-) The melting point and boiling points of the transition elements are high.
- b) Compounds of transition elements are usually paramagnetic.
- c) Many transition elements and their compounds have catalytic properties.
- d) The high density of transition elements.
- 2) Discus the followings:

(25 marks)

- a) Extraction of titanium.
- b) Compare and contrast the chemistry of Fe, Ru and Os.
- c) The chemical properties of Sc group.
- 3) Write on:

(25 marks)

- a) The assumptions of the crystal field theory.
- b) Draw energy level diagram and indicate the type of hybridization of:

d⁴, d⁵, d⁶, d⁷ and d⁸ square planar, octahedral and tetrahedral.

4) Explain:

(25 marks)

- a) The electronic configuration and The variable valency of d-block elements.
- b) The general properties of the transition elements comparing with the main elements.

(Good luck)

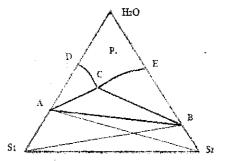
Examiners: Prof. Dr. Gad El-Hefnawy

TANTA UNIVERSITY FACULTY OF SCIENCE DEPATTMMENT OF CHEMISTRY

Final Examination For Second Level Students (Special Chemistry)

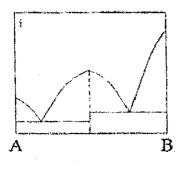
COURSE TITLE: The Phase Rule | COURSE CODE: CH2208

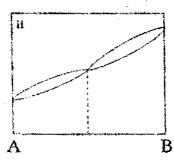
DATE: 24/5/2017 | TOTAL ASSESSMENT | TIME ALLOWED: 2

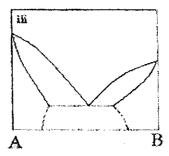

MARKS: 100 | HOURS

Answer the following questions (label each area line and point in your diagram):

- 1- a) What is the phase rule? For what systems it is applied? What is the phase equilibrium diagram? (15 marks)
- b) Evaluate P, C and F for the following systems: (15 marks
 - i) A mixture of four gases enclosed in a cylinder. ii) Ice/water/vapor.
 - iii) Hydrogen, oxygen and water enclosed in a vessel at room temperature.
 - iv) $2H_2O \leftrightarrow 2H_2 + O_2$ at $1800^{\circ}C$ starting from water.
 - v) S_{Rumbic}, S_{Monoclinic}, S_{Liquid} and S_{Vapor}.
- 2- Draw the vapor pressure composition phase diagram at constant temperature and the temperature composition phase diagram at constant pressure for two liquids which forms zeotropic mixture, azeotropic mixture, partially miscible liquids and immiscible liquids.


(20marks)


3- Discuss the following phase diagram of aqueous salt solution, apply the phase rule at each area and point in your phase diagram. Show the product of isothermal dehydration of solution P. (20marks)



4-Define the following phase diagrams of a binary condensed system, apply the phase rule at each region, line and point in your phase diagrams.

(30marks)

(Good luck)

Tanta University Faculty of Science Department of Chemistry

Exam for Level Two, chemistry section

CH 2204

Chemistry of Transition Elements

June 2018

Total Assessment Marks: 100

Termi Second Time Allowed: 2 h

Answer the following questions:-

	(25 marks) 🕝
1) a) Complete the following:	,
i) The assumptions of the crystal field theo	ry are 1,2,and 3
ii) The factors affecting Δ₀ values are 1	
iii) Oxidation number is defined as	
iv). IUPAC organization defined transition	elements as those elements
that	
2- Why are:-	(25 marks)
i- Mn ⁺² compounds very pale in colour.	
ii- Co ⁺³ complexes more stable than Co ⁺² comp	olexes.
iii- Zr and Hf compounds are similar.	
iv- Compounds of Ti (IV) and Zn (II) white.	
3) Discuss the following:- a) The splitting of d ³ ,d ⁴ ,d ⁵ and d ⁶ octahedral l b) The splitting of d ⁴ and d ⁸ square planer.	(25 marks) low spin and high spin.
C) Compare and contrast the chemistry o	f Mn an Re
A) Write down on the following:- a) - The rusting of iron	(25 marks)
b) - Ziegler-Natta catalyst for production	of high-density polyethylene.
c) - Nonstoichiometry.	
A) - Separation of lanthanides (Three	e methods only).

"GOOD LUCK"

Examiners: Prof. Dr. Gad El-Hefnawy

		·		•
	,			
62.	TANTA UNIV	ERSITY FACULTY OF	SCIENCE CHEMISTRY DEPARTMENT	· .
		FINAL EXAM	FOR SENIOR STUDENTS(CHEMISTRY	SECTION)
1966	COURSE ITLE:	NUCLEAR	CHEMISTRY (CH 2110)	TIME ALLOWED: 2 HOU
DATE: (6-6-2018	SECOND TERM	TOTAL ASSESSMENT MARKS: 50	-
Answer t	he flowing	questions		
1- A) Discuss	s the follow	wing points		(12Marks)
		sion nuclear rea	actor	112111011101
	ce detecto			
iii. Simil	arity betwe	en nuclear fissi	on and atomic bomb	
IV. ETTEC	ts of nucle	ar explosions		
D) CHOUSE	tile corre	ct answer and g	ve reason for your answer	: (6Marks)
i. The re	lation betw	ween ⁴⁰ S, ⁴⁰ Cl is		
	lsotopes eta partick	b) Isobars	c) Isotones	
a)	5 to 10 mr	n b) 1 to 4 mm	of human tissue c) 20 to 30 mm	•
iii. Fissio	n nuclear i	eactor produce	energy	
a)	Chemical	b) electrica	ıl c) kinetic	
2- A) <u>Draw the</u>	<u>diagram</u> f	or fission nucle	ar reactor	(4 Marks)
B) Compar	<u>e between</u>	<u>:</u>	(9 Marks)
i. Discov	ery of Ma	rie Curie and Irè	ne Joliot-Curie.	•
ii. Isoton	es and iso	topes		
iii. Radioa	active and	nonradioactive	nucleus	
3-Give the re	ason for t	he following: (\$0	Marks)	
i. Electro	n capture		number of atom by 1.	•

- 3-_

 - iii. Atomic bomb is used in the formation hydrogen bomb.
 - iv. Enriching uranium.
- 4-A) A rock contains 0.313 mg of Pb for each milligram of U. The half-life for the decay of U to Pb is 4.5 x 10⁹ year. How long ago was the rock formed? <u>(5 Marks)</u>
 - B) Complete the following equation, Write it as nuclear equation and define bombarding particle and ejected particle: (4 Marks)

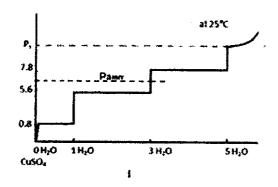
$${}^{18}_{8}O + {}^{1}_{1}H \longrightarrow {}^{18}_{9}F + \dots$$

Examiners Prof. Dr. Kamal El-Baradie Dr/ Nadia El-Wakiel

TANTA UNIVERSITY FACULTY OF SCIENCE DEPATTMMENT OF CHEMISTRY

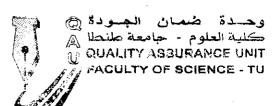
Final Examination For Second Level Students (Special Chemistry)

COURSE TITLE: The Phase Rule COURSE CODE: CH2208


DATE: 19/5/2018 TOTAL ASSESSMENT | TIME ALLOWED: 2

MARKS: 100 HOURS

Answer the following questions (label each area line and point in your diagram):


Each question (25 marks)

- 1- Write explanatory notes on the following:
 - a) Vapor pressure.
 - b) Ideal solution.
 - c) True, metastable and apparent equilibrium.
 - d) Heterogeneous equilibrium.
 - e) For a binary condensed system a eutectic is an invariant point.
- 2- a) Draw sketches for a binary condensed systems with simple eutectic, peritectic and eutectoid temperature.
 - b) If the normal boiling point of benzene is 80.1° C and its latent heat of vaporization is 103.04 cal/gram. Calculate its boiling point at 76 mmHg.
- 3- Two liquids show an upper critical solution temperature (C.S.T.). Indicate by means of diagrams and discussion the features of isothermal and total vapour pressure curves (a) Above C.S.T. (b) Below C.S.T.
- 4- Discuss the flowing phase diagrams.

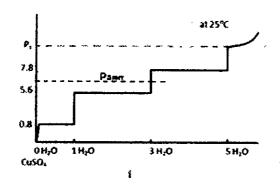
A F H G E B

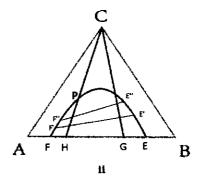
(Good luck)

TANTA UNIVERSITY FACULTY OF SCIENCE DEPATTMMENT OF CHEMISTRY

Final Examination For Second Level Students (Special Chemistry)

COURSE TITLE: The Phase Rule COURSE CODE: CH2208


DATE: 19/5/2018 TOTAL ASSESSMENT | TIME ALLOWED: 2


MARKS: 100 HOURS

Answer the following questions (label each area line and point in your diagram):

Each question (25 marks)

- 1- Write explanatory notes on the following:
 - a) Vapor pressure.
 - b) Ideal solution.
 - c) True, metastable and apparent equilibrium.
 - d) Heterogeneous equilibrium.
 - e) For a binary condensed system a eutectic is an invariant point.
- 2- a) Draw sketches for a binary condensed systems with simple eutectic, peritectic and eutectoid temperature.
 - b) If the normal boiling point of benzene is 80.1° C and its latent heat of vaporization is 103.04 cal/gram. Calculate its boiling point at 76 mmHg.
- 3- Two liquids show an upper critical solution temperature (C.S.T.). Indicate by means of diagrams and discussion the features of isothermal and total vapour pressure curves (a) Above C.S.T. (b) Below C.S.T.
- 4- Discuss the flowing phase diagrams.

(Good luck)

TANTA UNIVERSITY FACULTY OF SCIENCE CHEMISTRY DEPARTEMENT

Examina	cion oi secona y	real students of	of Chemistry	3000011
Course title:	Organic Ch	nemistry (4)	Course co	de: CH 221

course title:	Organic Chemistry (4)	Course code. Cri 2210
26.05.2018	Total Marks: 150	Time allowed: 2 hrs.

1- Answer by equations the following reactions

(50 Marks)

- a- Addition of water on carbonyl group. Discuss by mechanism.
- b- Hoffman Hypobromide reaction. Show the mechanism.
- c- Treatment of α bromoketone with sod alkoxide. Explain the mechanism
- d- Cumene to acetone and phenol

2- Explain by mechanism the following reactions.

(50 Marks)

- a- Explain in details the type of Elimination reaction.
- b- Diazo-coupling reaction. Explain the mechanism
- c- Benzyne mechanism.
- d- Show two examples for Neighbouring group participation.

3- Show by mechanism the following reactions

(50 Marks)

- a- Alkylation of benzene. Show the mechanism
- b- Nucleophilic substitution reaction, Show the mechanism.
- c- Cyanide ion can be used as Ambident nucleophile. Explain.
- d- Pinacole- Pinacolone rearrangement. Show the mechanism

	m caal
Kind regards	Prof. Mahmoud Fahmy
Killa legalas	
	<u> </u>

	1	EXAMIN	ATIO	N FOR SO	PHOMORES (S	ECOND LEVEL	.) STUDENTS OF
	SPECIAL CHEMISTRY SECTION						
1969	COURS	E TITLE:	ST	EREOCHI	EMISTRY		COURSE CODE:CH 2212
DATE: 30	MAY,	2018	TERM	: SECOND	TOTAL ASSESSME	NT MARKS: 100	TIME ALLOWED:2 HOURS
Answer	The	Followi	ng O	uestions :	.		
					false statments	. :	(8 Marks)
							than that of cis-
		h UV- sp				_	()
b- Cyc	lobuta	ne is the	mos	t stable cy	clic hydrocarbo	ns.	()
_				-	•		maleic acid does
				_	me conditions.		()
)) Doso	rihe e	ach of tl	he fol	lowing			(18 Marks)
				_	d trans-2,3-diph	envl-2-nentene	
					and mutarotati	-	•
				cemizatio		on.	
C- / Killo	ine ai	iid Catio.	ine ra	icciiiizatio	/II ·		
•		_			of the following ng (R)-(-)- man		(18 Marks)
b- (±)-	Pheny	lglycine	using	g chiral sta	ationary phase (C.S.P.).	
4)a- De:	scribe	the syntl	hesis	of (±)-3-b	enzyl-2-pentanc	ol.	(18 Marks)
							S)-2-ethylhexanoic acid
		•	-	Ü			,
5)a-Star	ting w	ith poly	meth	ylmethacı	rylate (PMMA)) describe the s	yntheses of (3R)-3-
		exanol.					(9 Marks)
b-The	chem	ical shift	t of et	thylenic p	roton $oldsymbol{\delta_{H}}$ was for	and experiment	tally to be 7. 60 ppm
							of the above ester?
				•			is are: $-\mathbf{Ph}_{gem} = 1.35$,
-CO	OEt _{cis}	=1.25,-0	COO	$\mathbf{Et}_{\mathrm{trans}} = 0.6$	$67, -Et_{cis} = -0.26,$	$-\mathbf{Et}_{\mathrm{trans}} = -0.29$	ppm). (9 Marks)
5)a-Dra	w and	name th	ie isoi	mers of th	e following com	pounds (with o	comment):(11Marks)
-		mohexa			nloro-2-pentanol		imethylcyclohexane.
L D	arr. 41	falla	.	massada			(9 Marks)
			-	mpounds		::: (2E 5D) (,
1-(2K	,3 3)- A	Aldotetro	se.	11-(2K,3S	S)-Tartaric acid.	III-(4E,3 K)	2,5-Dibromoheptene.
	-						

Examinars: Prof.Dr. Adel Selim Dr. Mohamed Azam Dr. Atef El-Garably

DEPARTMENT OF CHEMISTRY

TANTA UNIVERSITY FACULTY OF SCIENCE

(this		Tanta University	······································		
		Faculty of Science			
به الأستنز		Chemistry Department			
MC 1	Examination for Second Level Students (Credit Hours Syste				
21	Course Title	Stereochemistry	Course Code: CH2246		
Date:	30/ 5/ 2018	Total Assessment Marks: 50	Time Allowed: 2 hrs		

- 1. Draw and name the stereo-isomers of the following: (10 marks)
 - i. Tartaric acid
 - ii. Aldotetrose
- 2. Discuss the following: (15 mark)
 - i. Conformations of n-butane
 - ii. Synthesis of (±)-2-methyl-1-hexanol using malonate ester
 - iii. Separation of (±)-sec.butylamine by (R)-O-methyl mandileic acid
- 3. The δ expected for stilbene was found to be 6.5 ppm. Determine the isomer type? (where, $H_{trans} = 0$, $Ph_{cis} = 0.37$, $Ph_{gem} = 1.35$, $H_{cis} = 0$, $Ph_{trans} = -0.1$)? (5 marks)
- 4. Define each of the following: (8 marks)
 - i. Specific rotation and its measurements
 - ii. Diastereomers
 - iii. Plane of symmetry
- 5. Compare between each of the following: (12 mark)
 - i. Stereoselective hydroxylation of maleic and fumaric acid
 - ii. Racemization of α-chloroethylbenzene and mandelic acid
 - iii. Conformations of 1,2- and 1,4-dimethylcyclohexane

Prof. Dr. Adel selim

Dr. Mohamed Azaam

Dr. Atif El-Gharably

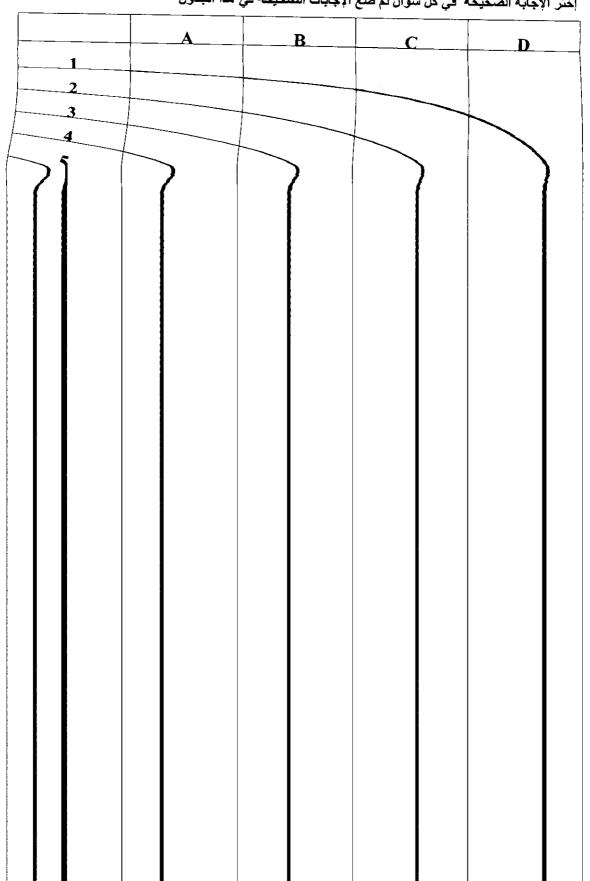
TANTA UNIVERSITY - FACULTY OF SCIENCE- CHEMISTRY DEPARTMENT

Chemical kinetics final exam for the second year students (Chemistry section)

Course code: CH2202

Date: 16 May 2018

Time allowed: Two hours


Total marks: 100

هذا الإمتحان مكون من جزئين (PART I & PART II) موزعه على ثماتي صفحات على النحو التالي:

PART I: Choose the correct answer

(50 marks, 2 marks each)

إخْتُر الإجابة الصحيحة في كل سؤال ثم ضع الإجابات الصحيحة في هذا الجدول

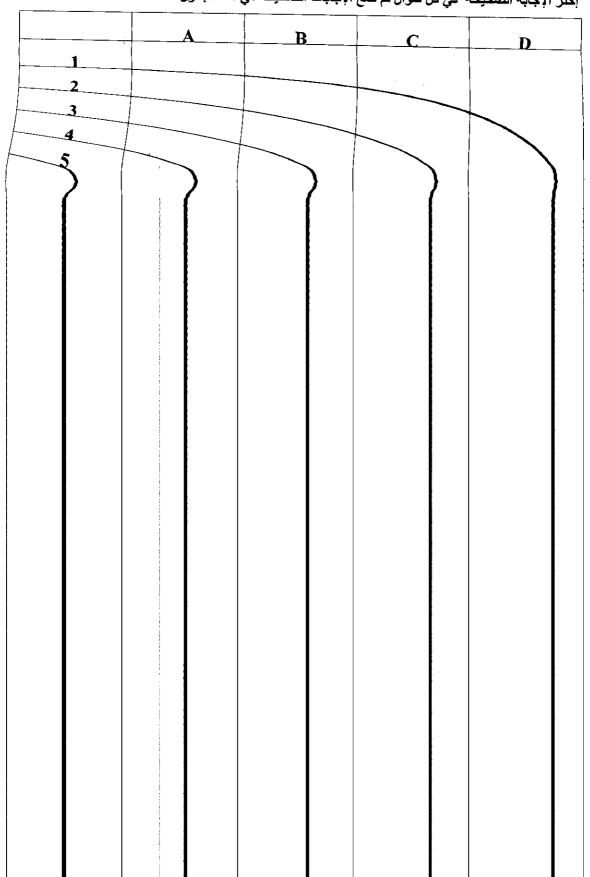
TANTA UNIVERSITY - FACULTY OF SCIENCE- CHEMISTRY DEPARTMENT

Chemical kinetics final exam for the second year students (Chemistry section)

Course code: CH2202

Date: 16 May 2018

Time allowed: Two hours


Total marks: 100

هذا الإمتحان مكون من جزئين (PART I & PART II) موزعه على ثماتي صفحات على النحو التالي:.

PART I: Choose the correct answer

(50 marks, 2 marks each)

إخْتر الإجابة الصحيحة في كل سؤال ثم ضع الإجابات الصحيحة في هذا الجدول

		Tanta University Faculty of Science	
	Examina	Chemistry Department ation for Second Level Students (Cr	redit Hours System)
	Course Title	Stereochemistry	Course Code: CH2246
Date:	31/5/2017	Total Assessment Marks: 50	Time Allowed: 2 hrs

1. Draw the following isomers:

(6 marks)

- i. (R)-2-Aminopropanoic acid
- ii. (S)-2-Chloro-1-butanol
- iii. (2R, 3S)-Aldotetrose

2. Discuss the following:

(12 mark)

- i. Conformations of n-butane
- ii. Synthesis of (±)-3-methyl-2-pentanol
- iii. Separation of (±)-2-aminopentane
- 3. The chemical shift for ethylenic proton (δ H) was found experimentally to be 5.6 ppm for 2-chloro-2-pentene, (Et _{gem}=0.44, Me _{trans}= -0.29, Me _{cis}= -0.26, Cl _{cis}=0.19, Cl _{trans}=0.03). Determine the geometrical isomerism of the above alkene? (4 marks)

4. Define each of the following:

(12 mark)

- i. Specific rotation
- ii. Pairs of enantiomers
- iii. Racemic mixture

5. Give reason (writ equations if possible):

(4 marks)

- i. Maleic acid readily forms a cyclic anhydride, while fumaric acid does not
- ii. Meso-tartaric acid is optically inactive compound

6. Compare between each of the following:

(12 mark)

- i. Stereoselective hydroxylation of cis- and trans-3-methyl-2-phenyl-2-pentene
- ii. Racemization of (-)-mandelic acid and (+)-α-chloroethylbenzene
- iii. Conformations of 1,2- and 1,3-disubstituted cyclohexane

	With	Best	Wishes,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,		· · · · · · · · · · · · · · · · · · ·

Prof. Dr. Adel selim

Dr. Mohamed Azaam

Dr. Atif El-Gharably

Question (II)

1-The rate constant for a reaction at 30 $^{\circ}$ C is found to be exactly twice the value at 20 $^{\circ}$ C. Calculate the activation energy?

2-The following data were obtained for the decomposition of N_2O_5 in CCl4. The following data were collected

					- ,		10010
Time (s)	0	423	753	1116	1552	1986	2343
[N ₂ O ₅] mol/L	1.46	1.09	0.89	0.72	0.54	0.43	0.35
112O5 HODE	X110	1.07	0.03				

Determine the following: (i)- the order with respect to $N_2 O_5$

- (ii)- The rate law for this reaction (iii)- The $[N_2O_5]$ at 3500 s after the start of reaction
- 3-Discuss three techniques for follow-up the rate of chemical reaction?

Question (III):

- 1-Discuss the factors affecting the rate of chemical reactions?
- 2-Write short notes about characteristics, classification of chemical catalysts, and discuss the mechanism of chemical catalysis according to Arrhenius concept?
- 3-Enumerate the methods for determination of the order of chemical reactions and discuss one of them?
- 4- For the reaction proceeded in a sequence of reversible steps;

$$A + B \xleftarrow{k_1} C + D$$

$$\begin{array}{ccc} & & & k_2 & & \\ C & & \longleftrightarrow & & E+F & \\ & & k_{-2} & & & \end{array}$$

Prove that the equilibrium constant for this reaction equal the product of all rate const	ants
ratio?	

Good Luck for all

Prof. Ali Gemeay

Prof. Hosny El-Daly

The second second second
KOS A
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 Sept. 1945
1959
1909
91 (S141 CAPE) SEC. 15
DATE:
I DATE.

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY

EXAMINATION FOR JENIOR (SECOND YEAR) STUDENTS OF PHYSICAL BIOCHEMISTRY

COURSE TITLE: CHEMISTRY OF CARBOHYDRATES AND LIPIDS COURSE CODE: BC2202

19-6-2017 TERM: SECOND TOTAL ASSESSMENT MARKS: 50 TIME ALLOWED: 1 HOUR

Answer all the questions

1) Correct the under lined word of each of the following: (7 marks)

- A. <u>3 carbons</u> are removed from fatty acyl coA in one turn of β -oxidation.
- B. Beta oxidation of fatty acid takes place in **cytosol**.
- C. A fatty acid with <u>14 carbon</u> atoms will undergo 6 cycles of beta oxidation
- D. Stereoisomers that differ only in configuration about one chiral carbon is called **enantiomers**.
- E. Liquid oil can be changed into solid fats by **halogenations** of unsaturated fatty acids.
- F. Any compound containing a carbohydrate group linked to a lipid moiety is called **proteolipids**.
- G. <u>Glycerophospholipids</u> are compounds contain sphingosine as an alchol.

2) Compare between each of the following (12 marks)

- A. Alpha and beta isomers
- B. Glycolysis and gluconeogenesis
- C. Wax and neutral fat
- D. Amylose and Amylopectin

3) Give an account of the following (16 marks)

- A. carnitine shuttle
- B. classification of fatty acid
- C. polyunsaturated fatty acids
- D. Transport of glucose into cells

4) Draw the structure of the following (15 marks)

- A. Active form of fatty acid
- B. maltose
- C. Cholesterol
- D. Fructose
- E. Phosphatidyl ethanol amine

Tanat university Second Term June 2017 **Faculty of Science** 2017 Time All. 2 hrs **Chemistry Department** Course No.: CH 2218 Final Examination for the 2nd year students For Material Sciences Answer the following Questions: Total Assessment Marks: 150 1-) A- Choose the correct Answer: (In Chemical equations). Each item 7 marks (1) Markovnikov's addition of HBr is not applicable to (a) Propene (b) 1-butene (c) 1-pentene (d) 2-butene (2) In the reaction of CH₃CH₂CH=CH₂ with HCI, the H of the HCI will become attached to which carbon? (a) C-1(b) C-2 (c) C-3(d) C-4(3) 2-Butene reacts with HBr to give (a) 1-Bromobutane (b) 2,3-Dibromobutane (c) 2-Bromobutane (d) 2,2 Dibromobutane (4) Which of the following alkenes will give a mixture of acetone and acetaldehyde on ozonolysis? (a) 1-butene (b) 2-methyl-2-butene (c) 2-butene (d) 2-methylpropene (5) Addition of two moles of HCI to propyne gives: (a) 2,2-Dichloropropane (b) 1,3-Dichloropropane (c) 1,2-Dichloropropane (d) None of these (6) Oxidation of a secondary alcohol with K₂Cr₂O₇ /H+ produces (a) a carboxylic acid (b) a Ketone (c) an aldehyde (d) an ester (7) Ketones are prepared by the oxidation of (a) Primary alcohol (b) Secondary alcohol (c) Tertiary alcohol (d) None of these (8) The reduction of a ketone (a) always gives a primary alcohol (b) always gives secondary alcohol (c) always gives a carboxylic acid (d) always gives a ketal (9) Reduction of benzaldehyde in the presence of ammonia gives (a) Toluene (b) Nitro benzene (c) benzyl amine (d) Aniline (10) reaction of benzene diazonium chloride with methanol gives (a) phenol (b) iodobenzene (c) chlorobenzene (d) Anisole (11) nitration of Acetanilide followed by hyderolysis gives (a) phenol (b) iodobenzene

(d) None of these

(c) nitrobenzene

TANTA UNIVERSITY - FACULTY OF SCIENCE- CHEMISTRY DEPARTMENT

Chemical kinetics final exam for the second year students (Chemistry section)

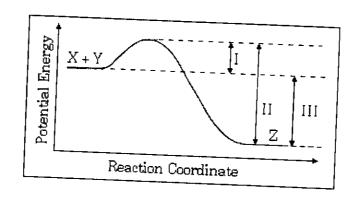
Course code: CH2202

Date: 16 May 2018

Time allowed: Two hours

Total marks: 100

هذا الإمتمان مكون من جزئين (PART I & PART II) موزعه على ثماتي صفحات على النحو التالي:


PART I: Choose the correct answer

(50 marks, 2 marks each) إخُتر الإجابة الصحيحة في كل سؤال ثم ضع الإجابات الصحيحة في هذا الجدول

В	C	D
		

s can provide information about which of the
f chemical reactions
C. i and iii D. ii and iii
2NO₂F
B $2d[NO_2] / dt = d[F_2] / dt$
D. $d[F_2] / dt = d[NO_2F] / dt$
action order equal to 3
B. rate = $k[A]^2[B]^{-1}$ D. rate = $k[A]^3[B]^0$
r the following reaction? $O + O_2(g) \rightarrow 2 NO_2(g)$
$k = k[NO]^2[O_2]$ C. Rate = $k[NO_2]^2$ offormation given.
correctly describes a reaction for which a plot of ight line?
to slope of the line. depend on the concentration of X. h be calculated from the intercept on the
ound to have a rate constant of 0.135 M ⁻¹ s ⁻¹ . What B. 6.5 s C. 7.4 s s information
by the rate equation, rate = k [ester] → alcohol + acid
acid
B. First order.D. Zero oredr.

8- An the	increase of 10°(result of	C is found to	double the r	ate of many che	emical reaction	ns. This is	
В. С.	Doubling the mode of the mode	olecules avera	age kinetic e sions	nergy.	tion energy.		
9. A	ccording to colling to colling to colling to the colling to colling to colling to colling to colling to the col	sion theory, the following	not all collising statements	ions between m provide reason	olecules lead t s why this is s	o?	
2. ; 3. ;	amount of energ Molecules canno Molecules that a Molecules in dif	ot react with or te improperly	each other un	nless a catalyst i	is present.	num	
A .]	and 2	B. 1 and 3		C. 2 and 3	D. 1 and 4		
10- Conthe s	sider the data for ame temperature	r several syste	ems for the c	conversion of re	actants to proc	ducts at	
		System	$E_a(kJ)$	ΔH(kJ)			
		1	40	-25			
		2	60	+30			
		3	15	+20			
		4	90	-55			
Which sy	stem is most lik	ely the fastes	t endothermi	c reaction?			
A. 1		B. 2		C. 3		D. 4	
11- If the is the	rate constant incactivation energ	creases from y for this read	0.40 M ⁻¹ s ⁻¹ action?	at 25°C to 0.80	M ⁻¹ s ⁻¹ at 35°C	, what	
	ween 0 and 40 k. ween 81 and 120			B. between 41 and 80 kJ/mol D. between 121 and 160 kJ/mol			
12- The ca	talytic converted to CO ₂ . This is	r in an autome an example o	obile uses Pd f:	or Pt metal to s	speed the comb	oustion	
A. hom C. acid	ogeneous cataly hydrolysis	sis		B. heterogenee D. enzyme cata	ous catalysis alysis		

The energy diagram for the reaction $X + Y \rightarrow Z$ is shown above. The addition of a catalyst to this reaction would cause a change in which of the indicated energy differences?

A. I only

B. II only

C. III only

D. I and II only

14- The reaction 2 NO₂ + O₃ \rightarrow N₂O₅ + O₂ obeys the rate law, **Rate** = k [NO₂][O₃]

Which of the following mechanisms is consistent with this experimental rate law?

(a)
$$NO_2 + NO_2 <=> N_2O_4$$
 (fast equilibrium)
 $N_2O_4 + O_3 -> N_2O_5 + O_2$ (slow)

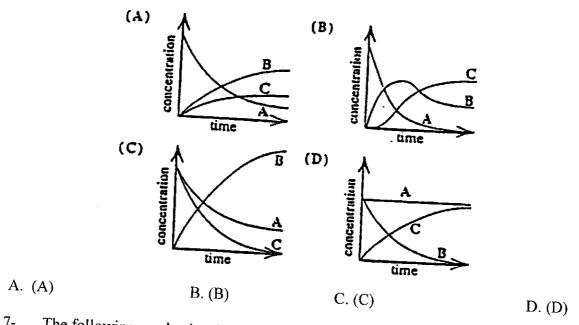
(b)
$$NO_2$$
 + O_3 -> NO_5 (fast) NO_5 + NO_5 -> N_2O_5 + $5/2$ O_2 (slow)

(c)
$$NO_2 + O_3 \sim NO_3 + O_2$$
 (slow) $NO_3 + NO_2 \sim N_2O_5$ (fast)

(d)
$$NO_2 + NO_2 -> N_2O_2 + O_2$$
 (slow) $N_2O_2 + O_3 -> N_2O_5$ (fast)

C. (c)

D. (d)


15- Which of the following statements is TRUE?

- A. Endothermic reactions have higher activation energies than exothermic reactions.
- B. The rate law for a reaction depends on the concentrations of all reactants that appear in the stoichiometric equation.
- C. The rate of a catalyzed reaction is independent of the concentration of the catalyst.
- D. There is a single rate-determining step in any reaction mechanism.

16- For the reaction:

Which concentration -time profile is consistent with this mechanism:

17- The following mechanism has been proposed for the reaction of NO₂ with F₂.

$$NO_2 + F_2 \rightarrow NO_2F + F$$
 slow
 $F + NO_2 \rightarrow NO_2F$ fast

Which of the following are true concerning this reaction:

- 1. The stoichiometric equation is $2 \text{ NO}_2 + F_2 \rightarrow 2 \text{ NO}_2 F$.
- 2.F is an intermedaite.
- 3.NO2 is an intermediate.
- A. 1 and 2 only
- B. 2 only
- C. 3 only
- D. 1 only
- 18- In protolytic mechanism for acid catalyzed reactions:
- A. The protonated substrate transfers its proton to the catalyst in the first step.
- B. The protonated substrate formed in the first step transfers its proton to the solvent molecule in the second step.
- C. The protonated substrate transfers its proton to the basic molecule.
- D. The protonated substrate is formed in the second step.

- 19- The advantage of heterogeneous catalysis is:
 - A. The reaction can be easily quenched.
 - B. The catalyst can be easily isolated from the reaction medium.
 - C. The product can be easily isolated from the reaction medium.
 - D. All of the above.
- 20- The steady-state approximation assumes that:
 - A. Reactants are in equilibrium with the intermediate.
 - B. The concentration of intermediate is equal zero.
 - C. The rate of disappearance of the reactants is equal to the rate of formation of the products.
 - D. The rate of change of concentration of all intermediates are negligably small (equal zero).
- 21. For the complex reaction:

$$A + 2B \xrightarrow{k_1} C \xrightarrow{k_2} P$$

The rate of reaction with respect to C is:

A.
$$k_1[A][B] - 2k_2[C]^2$$

B.
$$2k_1[A][B] - k_2[C]$$

C.
$$k_1[A][B]^2 - k_2[C]$$

D.
$$2k_1[A][B] - 2k_2[C]^2$$

- 22. In the retardation step of the chain reactions:
 - A. The chain carrier formed in the first step generates another chain carrier in a
 - B. The chain carrier interacts with the reactant molecules.
 - C. The chain carrier interacts with the product molecules.
 - D. Radicals are combine with each others.
- 23- The acid dissociation constant of aqueous hydrofluoric acid, HF, is $10^{-3.15}$ at 25°C. The rate constant for the elementary reaction HF \rightarrow H⁺ + F⁻ was found to be $10^{7.85}$ Liter mol⁻¹ sec⁻¹. The rate constant for the formation reaction H⁺ + F⁻

$$A 10^{-3.15} sec^{-1}$$

- 24- An autoatalytic reaction is;
 - A. Reaction catalyzed by acids.
 - B. Reaction catalyzed by bases.
 - C. Reaction catalyzed by both acids and bases.
 - D. Reaction catalyzed by its product.

- 25- The intermedaite formed in acid catalyzed reaction is called Arrhenius complex
 - A. The rate of product formation is greater than the rate of dissociation of the
 - B. The rate of product formation is lower than the rate of dissociation of the C. Both rates are equal.

 - D. The temperature of the reaction increased.

PART II- Answer the following:

1- The second-order rate constant for the reaction

$CH_{3}COOC_{2}H_{5}(aq) + OH^{*}(aq) \rightarrow CH_{3}COO^{*}(aq) + CH_{3}CH_{2}OH(aq)$

is 0.11 Lmol⁻¹s⁻¹. What is the concentration of ester after (a) 10s, (b) 10 min when ethyl acetate is added to sodium hydroxide so that the initial concentrations are [NaOH] = 0.050 mol L^{-1} and [CH2COOC2H5] = 0.100 mol L^{-1} ?

(Ten marks)

2- The following mechanism for the pyrolysis of acetaldehyde, CH₃CHO (g) →CH₄ (g) + CO(g), was proposed.

CH₃ CHO

$$(CH_3 CHO + CH_3)$$
 $(CH_3 + CH_3)$
 $(CH_3 + CH_3)$

The experimental rate law is given by:

$$\frac{d[CH_4]}{dt} = k[CH_3 \quad CHO]^{\frac{3}{2}}$$

Label each step as initiation, propagation and termination, then confirm that this mechanism is in agreement with the experimental rate law. (Twenty marks)

3- Consider the general mechanism of catalysis,

$$X + W \xrightarrow{k_2, slow} P + Z$$
where C represents the set 1. (2)

where C represents the catalyst, and S the substrate, X is the intermediate complex, and Y some substance which is formed in addition to it .W is a molecule which reacts with the complex to give the product or products P. Explain by equation and graph how the rate of reaction depends on both the concentration of catalyst and the substrate.

(Twenty marks)